Hard-coding, e.g. array size, multiple appearances with only some of them modified, leads to subtle bugs that are difficult to find and can remain within the program for long periods of time.
Checking the results (especially ad-hoc tasks as opposed to general systems testing)– a small bug can have catastrophic effects, e.g. a ‘1’ instead of an ‘I’ in a space probe software lead to failure and the waste of billions of dollars and years of work. When you’re young you don’t understand the importance of checking output / code until you make some really serious errors! Checking methods

(a) most effective method is visual checking of data, i.e. don’t just produce one small output like ‘3%’, print out the underlying data, intermediate results of calculations etc, and often it will be immediately obvious from looking at the data that something is wrong, e.g. half the figures are zero when none of them should be zero. It is common for two bugs to offset each other giving almost correct output but critical underlying flaws, also output may be approximately correct in the test case but due to errors may be drastically wrong in future data, although even if it stays approximately right that’s still a bad thing

(b) spot check, chose a few examples and manully reproduce the results with calculator/excel to check that they’re correct

(c) order-of-mangitude check, check that size of the output e.g. number of records selected, annual percentage change, etc is approximately the right size (but this is no guarantee as often a completely wrong method will generate approximately the correct result by co-incidence)
(d) get other department to check it as well as they will have completely different set of assumptions and may detect something you’ve missed and may also lead to re-considering the whole basis of the algorithm if there are different approaches to the underlying task.

Displaying data as ‘band’s is really useful in replacement for a single overall average or a column of specific figures, e.g. ‘1-10 hours’, ’10-20 hours’ etc, can show totals in bands and also replace each individual number by its band. Technically is suppose this is a ‘frequency distribution’
Notes

Debugging

(1) get a reproducible scenario that causes the problem each time it is run

(2) remove pieces of code to simplify the code & data to the simplest combination that produces the problem

(3) when the code&data becomes so simple that the problem disappears, the code change to cause this might identify where the problem is

print out a trace of values of intermediate variables, even for code that seems to be working, this will often highlight that something is obviously wrong, e.g. a variable that is zero or not changing when it should be changing

for major restructures to code, try

(a) running a test set of data, then changing the code a little step at a time, rerunning the test after each small chance to make sure that its still working.

(b) leave the old code in place, and use a yes/no switch to activate the new/old code until the new code is working properly (allows comparision of trace of variables for new & old methods to track down problems).

Learning to program (at the start of the book)
(a) read a basic introductory book to the language from cover to cover

(b) experiment and try and solve the problem yourself first before asking someone else, you might try 5 things that don’t work before you find one that does but you will learn a lot doing this. However, don’t bang your head against a brick wall, if you’ve spent a few hours trying to find how to do something in the language (as opposed to just creating the program) then ask someone else.

(c) Read other peoples code, will introduce you to new language features and clever ways of doing things, but don’t do this too much because you don’t want to pick up other people’s bad habits, get constrained into their way of thinking etc, you want your own style to emerge and hopefully think of the best ways to do things without other code confusing your thoughts.

(d) Flick through programming books reading a page or two at random when you have a few minutes free and gradually you will learn a lot.

Experimenting is important in some areas of computing. For example, increasing the speed of programs requires an understanding of how languages and systems are implemented internally. However, at the end of the day you will have to try a number of different approaches to see which runs the fastest, and often you will be surprised by the results. However, experimenting does NOT work as a method of finding bugs. If you have been searching for a bug in a system for a number of days it is common to become desperate and simply change things almost at random and seeing what result the changes have on the output of the program. This rarely finds the problem and the debugging may stretch out for several days. When this happens stop trying changes at random, sit down and try and work through the program methodically from start to finish, testing each stage and examining the data at each point in the process until the problem is found. Do not simply change code and re-run the program to see what happens to the output, this is a waste of time. You need to find the bug itself by examining each stage in the program. Experimenting can also have the very dangerous effect that you might change something that appears to fix the problem, however without understanding the true cause of the problem the bug may remain in the program long into the future, causing incorrect output that may go undetected for a long period of time.
Unnecessary complexity – in larger systems it is common to have large sections of complex code that are of little use. This may occur for a range of reasons

(a) the functionality supplied by the code is not as useful as originally expected and so is little used

(b) The functionality was used in the past but have now been largely replaced by newer and more efficient code

(c) An attempt has been made to create accuracy that is not warranted by the complexity required, e.g when several assumptions are behind a set of figures and these assumptions would have a greater impact on the accuracy of the results than minor improvements due to more accurate but complex calculations

Etc.

Do not be afraid to delete large sections of code (save a backup copy first!), even if this might result in some loss of functionality for the system.

In this way you might make a system faster, more reliable and much quicker and easier to maintain. It is also not uncommon to discover bugs that have been present in the system for long periods of time during the deletion and cleaning up process.

debug and vertify small sections of code at a time, e.g a for 3 blocks of 10 logic paths each, there are 30 paths if you check as separate paths, and 10,000 if you check the entire section as a unit. still need integration testing but this helps

coding guidelines

errror condition on else,. don't assume last case
one exit point at end of function
meaningful variable names
consistency in file layout, variable naming, file naming
plenty of whitespace
self-adjusting functions dont blindly follow the parameters
check values of parameters to avoid crashes
try to avoid numberic indexes, use text or #defines instead, ie. don't use mode = 4 use mode = NEW_MEMBER

common sources of programming bugs
expressions that are ambiguous to a human reader.

(bracket all ambiguous expressions)
e.g. not a or b can be interpreted as

(not a) or b

not (a or b)

use of the wrong variable name, e.g. within nested loops

(check for this)

for (i…)

for (j…)

[j] instead of [i]

Out-by-one, a loop or expression which misses a count by a value of one.
(check for this)

e.g for 1 = 0 to 100

// this loop iterates 101 times not 100 times
instead of

for I = 0 to 99

// repeats 100 times over 100 elements
memory corruptions due to

using memory that has already been de-allocated

using the wrong pointer

writing beyond the limit of the memory range

infinite loops
(check that loops will always terminate)

loops that do not terminate.

While (found)

Where a condition occurs where ‘found’ does not become ‘true’ and the loop continues indefinitely

