ATL version 2 notes
SAS-type functionality


All strings variable length including in data sets


Row internal format



Numeric variables



Offsets for each string variable into the third section of the record



Strings one after the other


Variable of type ‘row’ send an entire row in one statement


Include the ‘drop’ and ‘keep’ functions of SAS


For quick-and-dirty code use drop and keep to avoid long declarations of complex row types

 
Read and write SAS datasets

Atl would be very suitable for SAS type programs


3 ways of connecting nodes



Main




Connect a to b




Connect b to c




Connect c to d




Data -> a




D -> output



Code block (data step a



Block b




In -> xx




Yy -> out



Block c



Block d


Or alternatively



Main 




Data -> a




D -> output



Block a




->b



Block b

· c

Block c

· d

or 


main



a -> b



b -> c



c -> d


node a



in -> xx 



yy -> out;

Not sure how the whole object-orientated idea fits in with ATL if at all (as in block of code and data, also heirachies)

The 3GL heirachial model is so prelevant i.e. successful that it’s likely that ATL will need to be capable of a heirachial organization as well as network-pattern structure

Try to incorporate the essential functionality of VB, C and SAS.

‘streamed data’ – a merge node could merge two continuous flowing streams into one output stream using one-to-many etc relational operators, this is a (very!) different mental model from merging two tables into a new table of fixed size which may have advantages and disadvantages. Have data separators every now and then in the input data so that in practice fixed tables can go in one end and out the other.
ATL is (fully) event driven (windows is partly although each main window only executes one event at a time)

Write the first version as generating C code. Fast, easier to implement, easier to debug generated code, use C as ‘portable assembler’ which is good. However requires the user to have a C compiler, slower turn-around for compile-edit-debug, tricky to implement the parallel execution.

Clean up the parser to properly represent a grammar rather than using loops
