Sendone/sendall specified separately for each item in a queue, e.g. q1 q2 -> q3.
Default to temporary instance for expression, e.e. 2 -> sqr -> x, but have longer lifetime possible, .e.g

new sort -> a

for i = 1 to 3

i -> a

a -> z

equivalent to ‘1 2 3 -> sort -> z’

automatically add an end-of-list ‘#’ marker to queues created in middle of an expression
methods of triggering

code attached to in queue – keep calling while input queue is not empty

signal to special trigger queue – still need end-of-list marker because input data may not have fully arrived

pull from output queue – still need end-of-list marker because input data may not have fully arrived
problem with ?a for size – size may change between the test and the next action.

Functions/macros – run time (C), complie time(c), mixed runtime/compile time (SAS), also run-time text substation, i.e. x=field1; fred%x = 10

Typed vs variant variables

Compile time vs run time typing

Queues are untyped, i.e. you can send anything through any queue

Compile time typing is still better than run-time typing even if it is optional to avoid performance overhead, because some code may be executed rarely.

Linking of queues, e.g.

a.out link b.in

1 -> a;

2 -> a;

b -> x;

chain: expr, expr, << chain >>, expr -> n1 -> n2 -> n3

pass an entire table as one item, or each row as an item (implications, how to specify each method?)

optimisations

compile time type checking where possible otherwise run-time checking

pass pointers around not copies of actual structure (unless copy operator used)

copy pointers only if read-only access used

modify in-place if source and destination is same variable

allow variables to have a ‘null’ value as well as numeric etc?

what about exception handling

write up a proper reference with a BNF grammer and semantic rules
Produce a unix version as well.

Include a built-on goalseeker (a primate mathametica/equation solver)
Sas is effectively a semi-declarative language, although a full declarative language would be ‘a * b = x + y’.

Dynamic memory allocation, nodes/arrays etc, linked list/tree structures

Functions from C, VB, LISP, SAS, EXCEL, APL & Mathematica (including excel add-ins, e.g. random numbers), black-scholes, bond value
Multiple linear regession, matrix inversions/operators?

Define models declaratively and run them?
Advantages of implied loop (SAS), replaces three lines (declare, for loop) with one, less chance of bugs with wrong index variable/ start/finish at wrong place, simpler variable name reference (not full path of variable name)

Methods of multiple reference – sas method - apply code block to all entries, multiply col a by col b, extract col to new matrix then multiply, what about sending whole table through pipe vs. send each row separately.

Include user-usable hash tables, linked list (singly/doubly), b-tree, binary tree etc.

Avoid unnecessary words, e.g. ‘int x’ not ‘dim x as integer’, use symbols instead of words but don’t overdo it.

Have a chapter on speed & efficiency, e.g. use tags not strings, use arrays not lists.
Dimension
Maths
computing

0

scalar

variable

1

vector

array

2

matrix

array / table (colums are named)

3+

tensor

array

increment “x, + => y”, or “x +> y” maybe?

Access queue items by number x[0] or key x[“fred”]
Write the compiler itself in atl?
Compiler option to intialise variables to zero/not intialise, detect variables intialised in code so not duplicate unnecessarily
Uses

General programming

System (compiler, device drivers)

Low-level

Application

Workflow routing

Simulation

Mathematical – multiple regression, attribution
Some low-level operations can effectively only be done using pointers, e.g. creating a heap and returning pointers/ID’s to blocks of memory,so include this but include range checking and have separate ‘link’ type for linking nodes, and array x[2] for string char access

True fractions, definitions of ‘num’ range and precision etc.

Installable types/engines

Boolean & relational operations (and, or, not, required each type to implement =, < etc)

Numeric operations +,-,/,*,**

Matix operations

Set operations?

True fractions and equation solving

Extended arithmetic, e.g. atribtrary precision

Complex numbers

Conversion for external float formats etc

Dates & times

Statistical, engineering etc functions.

Requirements for types

Duplicate item

Destroy item

Relational =, <>

Optional relational <, <=, >, >=

Inbuilt operations

Data moving

Control flow – ‘if’ and looping, recognises true and false result of expression only

Data structures – arrays, matricies, associative arrays, linked lists etc

Installable data structures?

Plug-in elements

Atomic data types

Aggregate data structures

Operators infix/prefix
Criteria for atomic types

Number of bytes

Direct copy ok yes/no

Compile-time execution of code for data structure processing

Options for aggregate processing/looping

x = first(fred)

While not xxx

x = next(fred,x)

y = prev(fred,y)

// doubly linked lists

delete(fred,x)

fred(z) = a

// insert at head of list

insert(fred,x,a)

// insert after x

or

on fred

{

a = b / c;

// run for each item in ‘fred’
}

simple and clear but can’t have local variable with same name as structure member.

Include equivalent of SAS ‘first.x’ facility?

Compiler warning when global and local variable with the same name

Uses of SAS ‘first.x’

Select one record from each sub-group, e.g. latest in date order

Select distinct i.e. one from each sub-group

Calc sum of var within each subgroup

calc largest of var within each group

sort routine, and also pattern matching like sql ‘like C%’ but regular expressions

in treating bitmaps as a set of items, with 1 for present and 0 for absent, an ‘and’ is a ‘intersection’ operator and an ‘or’ is a ‘union’ operator. Also complement/negate operator.

(see separate document ‘programming_languages’ for list of major programming languages)

stats built-ins such as ‘x = a correl b’ where ‘a’ and ‘b’ are arrays and ‘x’ is a scalar

automatically expand arrays as size grows (a convenience issue, like weak typing, sas & sql do this)
repeat (expr_times index_var)

{

}
optional index_var, set from 0 to times-1

ordered vs. unordered

unordered: hash table, table (in concept), array?

ordered: linked list, tree?
Features for

Fundamental operations (e..g if (a))

Where makes code significantly simpler, e.g. ‘on a {}’

Where messy to do manually (automatic resize)

Where compiler can implement more efficiently (string copy etc)
Csv file functions

Basic implementation to cover

(a) 3-dimensional array of numbers

x[1][2][3];

(a) 3-dimensional array of strings

x[1][2][3];

(b) 1-dimensioanl array of structs

x[1][“a”];

(c) 1-dimensional ass array of structs
x[“a”][“b”];

“orgn_id” “sort” => table1

node x

{

message “sort”

{

}

alternatively

“orgn_id” => table1.sort

++ a node or a message, i.e. ‘++ => x’ or ‘x => ++ => x’;

sqrt unop, i.e. “sqrt x => y;”
traditional 3gl’s code is heirachially structured, while ATL code is networked structured,

· much better fit to certain types of problems – finite state automatons, workflow, engines
· much better fit for task-parallel and distributed execution

· probably better for developing each part of the system separately, interfaces are clear and separate, also no globals.

· both systems allow one part to be mirror image of larger part (i.e. like fractals)

· both systems allow operating on high-level objects at macro level and low-level items at micro level

· possibility for graceful degradation rather than catastrophic failure but this might not be relevant in practice.
· Structure & array sending allows for higher-level operations, e.g. send a ‘report’ object to a node, possible with 3GL’s but not as natural?
· Can also be used for heirachical-type program structures

namespaces, have public names for major interfaces and limited-range names for nodes within a specific area, e.g. internally to an engine (although in this case probably default all to invisible unless explicity exported, but that is only single-level name hiding)

repeat () expression only evaluated once, i.e.

repeat (x)

x = a;

doesn’t alter cycle count

send-all
while (?x > 0) x -> y;

or repeat (?x) x -> y;

note that a ‘repeat’ is faster than a ‘while’ because the expression is only evaluated once.

dynamic data creation is implied, e.g. a –> b -> c creates intermediate items automatically, in contrast to C++ where items must be explicitly created & managed? (except for intermediate basic types in expressions and also copy constructors etc) (but what about constructors etc)

send-no-copy similar to using pointers/references in c/c++ or pass-by-reference, except only one current pointer to item allowed, and de-referencing operator (i.e. ‘*’) not required.
??x
number of items in an array (would need to store actual real entries separately from mem size allocated).

x y -> append -> x
add an entry at the end of an array

what about untyped/runtime typing such as ‘dim x as object, x[“a”]’ to implement things like ‘merge’ and ‘append’.

Copy of partially specified paths, e.g x[1] -> y[1] where x[1] is a struct

Disconnection of the calling routine and called routine operations – e.g. normal random number generator generates two numbers (box-muller method), can place both in output queue and second one will be used on second call to the random number node.

Brackets can contain a full chain, not just an expression, e.g. 5 + (3 -> sqrt) * 2 -> x
What about iterating an entire program through time, e.g. execute all nodes for 1/1/2005, then when finished execute all nodes for 1/2/05, etc – how would this work, what would this mean etc.

vb data types: binary, Boolean, byte, date, currency, double, integer, long, object, single, string, variant

format: floats, strings, dates/times, hex

declare/call DLL function

database functions? Sql, sql on internal data

GUI functions

Data processing/SAS functions

move corresponding

append row to table

grow tables automatically

sort table

merge tables

iterate through the rows of a table, preferably implied loop

import csv file into a table

unlike most task-parallel languages, e.g. parallel C, Fortran, subroutines are not explicitly started/called (i.e. cobegin funca; funcb; coend), but instantiation is implied by the structure of the ATL code, e.g.. a -> b -> c -> d, i.e. parallelism is implict in the program structure, not explicity structured.
Not all message-passing systems implement back-propogation triggering with demand-pull retrieval from a queue, some merely halt a routine on attempted retrieval from an empty queue..
Most systems, including parallel systems are heirachical, i.e. have one distinct focus point (top of heirachy), while ATL allows different system sections to stand at the same level (in theory).
Fortran M

Explicit parallelism (several statements within a PROCESS block)

Typed queues

Asynchronous send, synchronous retrieve through channels

queing of data? Triggering of code blocks?

Reference – triggering rules:
1. Code attached to input queue

Repeatedly executed while input queue is not empty

2. Code attached to output queue

Triggered for one iteration on attempted retrieval from empty queue

Not triggered if queue contains items

Repeat triggering if item not placed in queue on first iteration??

The code may place more than one item in the queue

Timing of set trigger flag, execution start/midway/completed, retrieval etc.

(a) attempted retrieval from empty queue – set trigger flag

(b) at some later time X, execute if trigger flag is set

(c) as execution ends, clear trigger flag (atomically, don’t allow trigger to be cleared and re-set during execution)
(d) repeat attempted retrieval at any time, set trigger flag if queue empty.

Execution within a node instance halts on attempted retrieval until data is present in the queue (also can happen for input queues when retrieving more than one item, although in this case there is no triggering involved, it simply a lazy-wait).

3. What about triggering for (a) back-propogation through several stages of demand-pull, (b) lazy-demand where demand-pull is used on a port that simply waits for input data to arrive rather than trying to retrieve it (or isn’t this possible, i.e. every port must have ‘in -> x’ regardless of the type including being either an input or output port).

4. Retrieval only from output queue or (input) queue that the code is attached to, send only to input queue or (output) queue that the code is attached to.
No statements to change execution point apart from ‘if’ and loops, i.e. no goto, break, continue, return/exit sub statements, also ensures that all functions exit at the bottom of the code block.
Numeric processing issues

Floating point: IEEE double-precision precision and range

No

symbolic computation (e.g x + y = z + m)

arbitrary precision arithmetic

fractions, i.e. store 1/3 exactly

decimal/bcd arithmetic

error propogation measurement (‘significance arithmetic’)

explicit vector processing

complex numbers

(but what about implementing complex numbers etc as nodes/new data types?)

operations +, -, *, /, ^, ++, --, mod, idiv

note: check that

(a) all values that aren’t decimals (i.e. are integers) are stored exactly for floating point (compared to bcd/decimal)

(b) since 0.1 is not an exact binary value (I think), recommend storing money amounts in cents rather than dollars?

(c) Note the danger of using ‘if a = b’ with floating point, see points (a), (b) above

Operators ‘x=’ for approximately equal, and ‘x<>’ for use with floating point? (round the last 1 or 2 digits). (or maybe default to the approx-equal and have special operators for exactly equal).
Section in manual on numeric processing and numeric issues (also section on strings – blanks, zero-length strings, case sensitive/insensitive comparisions, string functions, max length, null termination (i.e. can’t contain a null), ascii/ebcidic/Unicode etc)

Optional compiler switches for maximum performance:

No initialisation to zero/empty string

No array bounds checks

No run-time type checks?

No setting of divide-by-zero to a zero result

Etc.

Standard arrays are rectangular. Ragged arrays also?

In the standard library header include a set of standard constants, e.g. maximum double, max number of open file, maths constant ‘e’ etc.

What about overflow/underflow in calculations.

Apart from trivial cases like ‘rand()’, is back-propogation practical/relevant/necessary, e.g.

May require linking ‘a <-> b <-> c’ in order to progress through more than one stage

Most demand-pull requires parameters, so “a -> b; b ->c” turns into feed-forward anyway? Although ‘a->b’ may just set a parameter rather than generating output data

True demand pull with parameters would require

b attempts to retrieve from a

a in turn requests parameters from b

b retrieval of data succeeds

lazy-retrieval is possible with sequence below

b attempts retrieval from a

a waits for input (note a lazy wait, no triggering involved)

b retrieval of data succeeds

what about “x -> a; a -> y; a -> y; a -> y” e.g. reading from file

uses for demand-pull
‘rand()’,
reading from file, etc.

rule-based systems?

