

SQL Essentials

Mark McIlroy

Edition 8

Other books by the author

Introduction to the Stockmarket
 	
The Wise Investor

The Art and Craft of Computer Programming

© Mark McIlroy 2016 - 2020. All rights reserved.

ISBN 978-1492345831

Contents

1.	Prerequisites	4
2.	SQL	5
3.	Test environment	6
4.	Single-table operations	7
4.1	Selecting rows (the WHERE clause)	7
4.2	Selecting columns	9
4.3	Selecting rows, extended operations	11
4.4	Selecting columns, extended operations	18
5.	Sorting result tables	23
6.	Counting rows	26
7.	Group-by: Sub-totalling, totals and averages	28
8.	Selecting rows from a GROUP BY statement (the HAVING clause)	32
9.	Key fields	33
10.	Joining tables	34
11.	Retrieving data from multiple tables continued	36
12.	Multiple joins to the same table	42
13.	Cartesian Joins	43
14.	Distinct values	43
15.	Union	46
16.	The ‘IN’ operator	47
17.	Subqueries	48
18.	Correlated subqueries	49
19.	NULL values	50
20.	Inserting, Deleting and Updating data	51
20.1	Inserting records	51
20.2	Updating records	52
20.3	Deleting records	53
21.	Database design practices	54
22.	About the Author	56
23.	Appendix A – Implementation variations	56
24.	Appendix B – Summary of operators	57
25.	Appendix C – Other statements	58

[bookmark: _Toc30861265]Prerequisites

This book is in a condensed format. The reader will need to try out the examples in the test environment and experiment with SQL queries that are similar to the examples given in the text.

The full formats of SQL are complex and take some time to learn. Basic SQL statements such as viewing a table and selecting a sub-set of rows are less difficult to learn.
 	
A test environment is located at

www.indie-ventures.com/test_env/sql_test.php

The reader can try out all the examples from the book in this environment and experiment with SQL queries.

Relational data tables

Relational data is stored in tables which can be represented in tabular format.

	Customer_ID
	First_Name
	Surname
	Date_Of_Birth
	Postcode

	0000001
	Stephen
	Adjei
	5/06/1988
	4235

	0000002
	Sammy
	Adams
	26/12/1983
	5432

	0000003
	Linda
	Larigue
	21/04/1976
	2342

	0000004
	Sina
	Siva
	24/07/1983
	4342

	0000005
	Vangie
	Robinson
	5/12/1988
	5432

	0000006
	Christiana
	Majola
	3/01/1973
	2345

	0000007
	Olya
	Ayinoko
	22/07/1968
	9464

	0000008
	David
	Kellyn
	14/08/1982
	1242

	0000009
	Olusegun
	Aby
	11/09/1982
	4344

	0000010
	Maulesh
	Amoah
	20/01/1965
	5342

	0000011
	Raj
	Lucas
	1/01/1973
	6543

	0000012
	Emmanuel
	Crenshaw
	6/04/1987
	3456

	0000013
	Jessica
	Adesina
	3/05/1977
	2356

	0000014
	Selina
	Amoah
	16/01/1982
	5423

	0000015
	Ademola
	karmakar
	11/03/1971
	3474

 	

Databases are typically used to store information such as customer records, transactions, accounting records and so on.

Data processing is used extensively in the government and corporate business sectors.

[bookmark: _Toc30861266]SQL

SQL, Structured Query Language, is a database query language that provides functions for retrieving, sorting, filtering and totalling information that is stored in relational data bases.

SQL also contains statements for updating databases and performing administration functions such as altering user permissions.

SQL was originally developed in the late 1960’s and remains the most widely-used language for querying large-scale data storage systems.

[bookmark: _Toc30861267]Test environment

A test environment is located at

www.indie-ventures.com/test_env/sql_test.php

You can try out the examples from the book in this environment.

The tables in the test environment are:

	Table 	

	
	Columns

	currency

	
	id, code, description

	currexchange

	
	name, amount, exchdate

	customer

	
	customer_id, first_name, surname, date_of_birth, postcode

	product

	
	id, product_code, currency_code, description

	sample_list

	
	id, product_code

	sample_list_ext

	
	id, product_code

	transactions
	
	transaction_id, trans_date, customer_id, transaction_code, product_code, items, amount

[bookmark: _Toc30861268]Single-table operations

Viewing a table can be done using a statement such as

 	select * from customer

In this case the ‘*’ represents that all columns should be included in the result table.

Depending on the query environment that you are using, it may be necessary to terminate the query with a semicolon.

Other examples of basic queries are listed below.

 	select * from product

 	select * from sample_list

[bookmark: _Toc30861269]Selecting rows (the WHERE clause)

Generally, rows are filtered so that only rows matching certain criteria are included in the result set or the table calculations.

For example,

select
	 	*
from
 	transactions where 	customer_id = '2'

This statement will retrieve all transaction records where the customer ID is ‘2’

Text constants in SQL expressions are surrounded by single quotes.

Result

	trans_id
	trans_date
	customer_id
	transaction_code
	product_code
	items
	amount

	3
	2018-01-04
	2
	PURCHASE
	PCDE12
	2
	846.24

	4
	2018-01-12
	2
	CANCELLATION
	PCDE27
	1
	425.54

	5
	2018-01-12
	2
	PURCHASE
	PCDE12
	2
	846.24

	6
	2018-01-12
	2
	PURCHASE
	PCDE12
	2
	846.24

A second example of row selection is shown below.

select
	 	*
from
	 	customer 	
where 	customer_id = ' 7’

Result

	customer_id
	first_name
	surname
	date_of_birth
	postcode

	7
	Olya
	Ayinoko
	1968-07-22
	9464

[bookmark: _Toc30861270]Selecting columns

In many cases only a selection of columns is needed in the result set.

This is specified as follows.

 	select
surname,
first_name, date_of_birth
from
customer

Note the commas separating the column names in the SELECT statement.

Result

	surname
	first_name
	date_of_birth

	Adjei
	Stephen
	1988-06-05

	Adams
	Sammy
	1983-12-26

	Larigue
	Linda
	1976-04-21

	Patel 	Sabina 	1973-07-24

	Robinson Vangie 	1988-12-05

	Majola
	Christiana
	1973-01-03

	Ayinoko
	Olya
	1968-07-22

	Kellyn
	David
	1982-08-14

	Aby
	Olusegun
	1982-09-11

	Amoah
	Maulesh
	1965-01-20

	Lucas
	Raj
	1973-01-01

	Crenshaw
	Emmanuel
	1987-04-06

	Adesina
	Jessica
	1977-05-03

	Amoah
	Selina
	1982-01-26

	Karmakar
	Ademola
	1971-03-11

The ‘from’ clause specifies the table that is used as the source of the data.

The ‘select’ column names indicate which columns to select.

A second example is shown below.

select
transaction_id, trans_date, customer_id, product_code
from
transactions

Result

	transaction_id
	trans_date
	customer_id
	product_code

	1
	2018-01-06
	1
	PCDE12

	2
	2018-01-12
	1
	PCDE27

	3
	2018-01-04
	2
	PCDE12

	4
	2018-01-12
	2
	PCDE27

	5 	2018-01-12 	2 	PCDE12

	6 	2018-01-12 	2 	PCDE12

	7
	2018-01-05
	3
	PCDE12

	8
	2018-01-12
	4
	PCDE43

	9
	2018-01-21
	4
	PCDE43

[bookmark: _Toc30861271]
Selecting rows, extended operations

When selecting rows, multiple conditions can be combined using ‘and’ and ‘or’.

Brackets should be used when the ‘where’ expression includes a combination of ‘and’ and ‘or’ expressions.

For example

select
	 	*
from
transactions
where
trans_date > '2018-01-04' and
product_code = 'PCDE12'

Result

	trans_id
	trans_date
	cust_id
	transaction_code
	product_code
	items
	amount

	1 	2018-01-06 	
	1 	PURCHASE 	PCDE12 	423.12 1

	5 	2018-01-12 	
	2 	PURCHASE 	PCDE12 	846.24 2

	6 	2018-01-12 	
	2 	PURCHASE 	PCDE12 	846.24 2

	7
	2018-01-05
	3
	PURCHASE
	PCDE12
	2
	846.24

The SQL operator for Not-Equal is ‘<>’.

Note that dates and date-times are generally stored in ISO standard date format which is in Year-Month-Day Hour-Minute-Second format.

The reason for this is that dates stored in this format sort correctly when sorted as text fields.

Also, this is a standard format which can later be converted into the local date format of the country of the system user.

A second example of the use of multiple conditions is shown below.

select
	 	*
from
 	transactions where
 	(trans_date > '2018-01-04' and
trans_date < '2018-01-15') 	or
product_code = 'PCDE27'

Result

	
	

	transaction_id
	trans_date
	customer_id
	transaction_code
	product_code
	items
	amount

	1
	2018-01-06
	1
	PURCHASE
	PCDE12
	1
	423.12

	2
	2018-01-12
	1
	PURCHASE
	PCDE27
	1
	324.12

	4
	2018-01-12
	2
	CANCELLATION
	PCDE27
	1
	425.54

	5
	2018-01-12
	2
	PURCHASE
	PCDE12
	2
	846.24

	6
	2018-01-12
	2
	PURCHASE
	PCDE12
	2
	846.24

	7
	2018-01-05
	3
	PURCHASE
	PCDE12
	2
	846.24

	8
	2018-01-12
	4
	REFUND
	PCDE43
	1
	233.2

The ‘like’ operator

The ‘like’ operator allows for a selection of records matching similar patterns.

For example

 	select
 	 	*
 	from 	 				customer
 	where 	 				surname like ‘A%’

The ‘%’ symbol is used to match any sequence of characters.

This selects all customers with surnames starting with ‘A’

Result

	customer_id
	first_name
	surname
	date_of_birth
	postcode

	1
	Stephen
	Adjei
	1988-06-05
	4235

	2
	Sammy
	Adams
	1983-12-26
	5432

	7
	Olya
	Ayinoko
	1968-07-22
	9464

	9
	Olusegun
	Aby
	1982-09-11
	4344

	10
	Maulesh
	Amoah
	1965-01-20
	5342

	13
	Jessica
	Adesina
	1977-05-03
	2356

	14
	Selina
	Amoah
	1982-01-26
	5423

Another example of the ‘Like’ operator is shown below.

select
 	*
from
 	customer
where
 	postcode like '%345'

Result

	customer_id
	first_name
	surname
	date_of_birth
	postcode

	6
	Christiana
	Majola
	1973-01-03
	2345

The ‘in’ operator

Records can also be selected based on values in a second table, using the ‘in’ operator.

 	select
 	 	*
 	from 	 				transactions
where
 	 	product_code in (select product_code from sample_list)

Result

	Trans_id
	trans_date
	Cust_id
	transaction_code
	product_code
	items
	amount

	1
	2018-01-06
	1
	PURCHASE
	PCDE12
	1
	423.12

	3
	2018-01-04
	2
	PURCHASE
	PCDE12
	2
	846.24

	5
	2018-01-12
	2
	PURCHASE
	PCDE12
	2
	846.24

	6 	2018-01-12 	
	2 	PURCHASE 	PCDE12 	846.24 2

	7 	2018-01-05 	
	3 	PURCHASE 	PCDE12 	846.24 2

	8
	2018-01-12
	4
	REFUND
	PCDE43
	1
	233.22

	9
	2018-01-21
	4
	PURCHASE
	PCDE43
	1
	233.22

A second example of this operator is shown below.

select
 	*
from
 	customer
where
customer_id in (select customer_id from transactions where trans_date >
'2018-01-04' and trans_date < '2018-01-15')

Result

	customer_id
	first_name
	surname
	date_of_birth
	postcode

	1
	Stephen
	Adjei
	1988-06-05
	4235

	2
	Sammy
	Adams
	1983-12-26
	5432

	3
	Linda
	Larigue
	1976-04-21
	2342

	4
	Sabina
	Patel
	1973-07-24
	4342

In most cases the ‘in’ operator is applied to a single data field.

In some cases it may be possible to use the ‘in’ operator on a query with multiple columns by bracketing the column names, such as in the example below.

select
 	*
from
 	transactions where
 	(customer_id, trans_date) in
(select customer_id, trans_date from transactions where trans_date > '2018-01-04')

Result

	transaction_id
	trans_date
	customer_id
	transaction_code
	product_code
	items
	amount

	1
	2018-01-06
	1
	PURCHASE
	PCDE12
	1
	423.12

	2
	2018-01-12
	1
	PURCHASE
	PCDE27
	1
	324.12

	4
	2018-01-12
	2
	CANCELLATION
	PCDE27
	1
	425.54

	5
	2018-01-12
	2
	PURCHASE
	PCDE12
	2
	846.24

	6 	2018-01-12 2 	PURCHASE 	PCDE12 	846.24 2

	7
	2018-01-05
	3
	PURCHASE
	PCDE12
	2
	846.24

	8
	2018-01-12
	4
	REFUND
	PCDE43
	1
	233.22

	9
	2018-01-21
	4
	PURCHASE
	PCDE43
	1
	233.22

[bookmark: _Toc30861272]Selecting columns, extended operations

An example of combining row and column selections is shown below.

select
transaction_id, trans_date, customer_id, product_code
from
transactions
where
trans_date > '2018-01-04' and
product_code = 'PCDE12'

Result

	transaction_id
	trans_date
	customer_id
	product_code

	1 	2018-01-06 	1 	PCDE12

	5
	2018-01-12
	2
	PCDE12

	6
	2018-01-12
	2
	PCDE12

	7
	2018-01-05
	3
	PCDE12

This format of SQL query, along with the ‘SELECT * FROM XX’ format, is the most widely-used format in practice.

Column definitions

In general the ‘select’ list will include a list of column names.

SQL also supports expressions in place of column names.
For example

 	select
 	 	surname || ‘ ‘ || firstname as full_name, 	
 	from 	 				customer

Example 2

 	select
 	 	amount,
items,
amount / items as price_per_unit
 	from 	 				transactions

Expressions can include the concatenation operator || which combines two text values, and mathematical operators.

Note: the || operator is the standard SQL operator for string concatenation.

Due to the variation of SQL used in the test environment, the function ‘concat()’ must be used instead.

 	select
 	 	concat(first_name , ' ', surname) as full_name, 	
 	from 	 				customer

The resulting table from this query is shown below.

Result

	full_name

	Stephen Adjei

	Sammy Adams

	Linda Larigue

	Sabina Patel

	Vangie Robinson

	Christiana Majola

	Olya Ayinoko

	David Kellyn

	Olusegun Aby

	Maulesh Amoah

	Christopher Lucas

	Emmanuel Crenshaw

	Jessica Adesina

	Selina Amoah

	Ademola Karmakar

Columns in the select statement can be given names by adding the text ‘as XXX’ after the selection expression, where XXX is the name to be given to the column.

This is highly recommended where an expression is used to calculate the result of the column, such as ‘count(*)’ or ‘columna || columnb’.

A second example of column definitions is shown below.

select
 	 	customer_id,
product_code, amount, items,
amount / items as price_per_unit
 	from 	 				transactions

Result

	customer_id
	product_code
	amount
	items
	price_per_unit

	1
	PCDE12
	423.12
	1
	423.12

	1
	PCDE27
	324.12
	1
	324.12

	2
	PCDE12
	846.24
	2
	423.12

	2
	PCDE27
	425.54
	1
	425.54

	2
	PCDE12
	846.24
	2
	423.12

	2
	PCDE12
	846.24
	2
	423.12

	3
	PCDE12
	846.24
	2
	423.12

	4
	PCDE43
	233.22
	1
	233.22

	4
	PCDE43
	233.22
	1
	233.22

Note that in this example some customers have purchased two items of product PCDE12.

The query engine has calculated the price-per-unit from these transactions in the final column of the result set.

[bookmark: _Toc30861273]Sorting result tables

Rows returned from an SQL query may be returned in a random order.

The ordering of the rows can be specified using an ‘order by’ clause. For example:

 	select
 	 	*
 	from 	 				transactions
order by
 	 	trans_date
 	 	

Result

	transaction_id
	trans_date
	customer_id
	transaction_code
	product_code
	items
	amount

	3
	2018-01-04
	2
	PURCHASE
	PCDE12
	2
	846.24

	7
	2018-01-05
	3
	PURCHASE
	PCDE12
	2
	846.24

	1
	2018-01-06
	1
	PURCHASE
	PCDE12
	1
	423.12

	2
	2018-01-12
	1
	PURCHASE
	PCDE27
	1
	324.12

	4
	2018-01-12
	2
	CANCELLATION
	PCDE27
	1
	425.54

	5 	2018-01-12 2 	PURCHASE 	PCDE12 	846.24 2

	6 	2018-01-12 2 	PURCHASE 	PCDE12 	846.24 2

	8 	2018-01-12 4 	REFUND 	PCDE43 	233.22 1

	9
	2018-01-21
	4
	PURCHASE
	PCDE43
	1
	233.2

In this example the list of transactions has been returned in sorted order of transaction date.

Multiple columns may be included in the ‘order by’ clause by separating the column names by commas.

In this case, the records will be sorted in order of the first column in the list. Where two records have the same value in this column, they will be further sorted by the next and subsequent column names in the ‘order by’ clause.

In the following case the previous example has been extended to include additional sorting where transactions occur on the same date.

select
	 	*
from
	 	transactions
order by
	 	trans_date,
 transaction_code

Note that as with column names in the Select clause the column names in an Order By or Group By clauses should be separated by commas.

Result

	transaction_id
	trans_date
	customer_id
	transaction_code
	product_code
	items
	amount

	3
	2018-01-04
	2
	PURCHASE
	PCDE12
	2
	846.24

	7 	2018-01-05 3 	
	PURCHASE 	PCDE12 	846.24 2

	1 	2018-01-06 1 	
	PURCHASE 	PCDE12 	423.12 1

	4 	2018-01-12 2 	
	CANCELLATION PCDE27 	425.54 1

	2
	2018-01-12
	1
	PURCHASE
	PCDE27
	1
	324.12

	5
	2018-01-12
	2
	PURCHASE
	PCDE12
	2
	846.24

	6
	2018-01-12
	2
	PURCHASE
	PCDE12
	2
	846.24

	8
	2018-01-12
	4
	REFUND
	PCDE43
	1
	233.22

	9
	2018-01-21
	4
	PURCHASE
	PCDE43
	1
	233.22

In this example there are several transactions occurring on the 12th of January. These transactions have been further sorted in order of ‘transaction_code’.

Sorting columns in descending order

Data items in a field may sorted in descending order by adding ‘desc’ after the column name.

For example

 	select
 	 	*
 	from 	 				transactions
order by
 	 	customer_id,
trans_date desc

Result

	transaction_id trans_date customer_id transaction_code 	product_code items amount

	2 	2018-01-12 1 	PURCHASE 	PCDE27 	324.12 1

	1 	2018-01-06 1 	PURCHASE 	PCDE12 	423.12 1

	4
	2018-01-12
	2
	CANCELLATION
	PCDE27
	1
	425.54

	5
	2018-01-12
	2
	PURCHASE
	PCDE12
	2
	846.24

	6 	2018-01-12 2 	PURCHASE 	PCDE12 	846.24 2

	3
	2018-01-04
	2
	PURCHASE
	PCDE12
	2
	846.24

	7 	2018-01-05 3 	PURCHASE 	PCDE12 	846.24 2

	9 	2018-01-21 4 	PURCHASE 	PCDE43 	233.22 1

	8
	2018-01-12
	4
	REFUND
	PCDE43
	1
	233.22

In this example the transactions are sorted in order of customer ID.

The records for each customer are then further sorted, in descending order, by transaction date.

The ‘DESC’ keyword applies to a single column only, each column is sorted separately and
‘DESC’ can be added after whichever column names it applies to.

[bookmark: _Toc30861274]Counting rows

count(*) can be used to count the number of records in a table.

For example

 	select 	 			count(*)
from 	 				transactions

Result

	count(*)

	9

A “where’ clause can be used to count a sub-set of the rows in the table

 	select 	 			count(*) 		from 	 				transactions
 	where
 	 	trans_date > '2018-01-06'

Result

	count(*)

	6

Counting sets of records can also be done using the ‘Group By’ clause, see the next section.

Counting non-NULL fields

If a column name is included within the ‘count()’ expression , the count of records only includes records where the value for this column is not NULL.

select
 	 	count(customer_id)			from 	 	
transactions
 	where
 	 	trans_date > '2008-01-06'

Result

	count(*)

	6

Note that this example calculates the number of ‘transaction’ records matching the ‘where’ clause, where the ‘customer_id’ field is not NULL.

This usage of the ‘count(X)’ operator is relatively rare and in most cases ‘count(*)’ is sufficient.

[bookmark: _Toc30861275]Group-by: Sub-totalling, totals and averages

A ‘group by’ clause can be used to summarise records into a smaller number of total records, and to calculate totals, averages and counts of records.

‘Group by’ is a complex use of SQL functionality and is not recommending for initial use.

For example:

select
 	 	customer_id, 	 			trans_date,
 	 	sum(amount)
from
 	 	transactions
group by
 	 	customer_id

Result

	customer_id
	trans_date
	sum(amount)

	1
	2018-01-06
	1047.24

	2
	2018-01-04
	1895.23

	3
	2018-01-05
	153.24

	4
	2018-01-12
	1056.33

SQL has an open syntax that will allow many combinations of queries to be written.

Only some combinations of clauses will produce meaningful results.

The following rules should be used to produce meaningful result sets when ‘group by’ is used.

1. Select the ‘group by’ columns.

One row will be produced in the result set for each combination of the ‘group by’ columns.

For example,
 	group by customer_id

Will produce one set of values for each customer.

 	group by customer_id, trans_date

Would produce a row for each customer, for each date on which a transaction occurred.

2. Include the ‘group by’ column(s) as column(s) in the ‘select’ section.

For example

select
 	 	customer_id,
 	 	trans_date
from
 	 	transaction 			group by 	 				customer_id,
 	 	trans_date

3. Select the aggregate functions and include them in the ‘select’ section

The aggregate functions include:

	 	sum(column)
	Sum the column values

	min(column)
	Select the minimum value

	max(column)
	Select the maximum value

	 	avg(column)

	Calculate the average value

		count(*) 	
	Count the number of rows

	 	count(column)
	Count the number of rows with non-NULL values

	…

For example

select
customer_id, 	
count(*) as transaction_count,
sum(amount)
from
transactions
group by
customer_id as transaction_total
	

Result

	customer_id
	transaction_count
	transaction_total

	1
	2
	1047.24

	2 	4 	1895.23

	3 	1 	153.24

	4
	2
	1056.33

This query will return one row for each customer who has transaction records, with the following columns:

	 	customer_id
	The customer number

	 	count(*) 	
	The number of transactions for the customer

	 	sum(amount)
	The total value of the transactions for the customer

When an expression is used in place of a column name, the naming of the result column is database-dependant.

In these cases it is preferable to name the result column by adding ‘as XXX’ after the column definition in the ‘SELECT’ section.

4. Do not include additional columns in the ‘select’ column list

This may result in an undefined result set.

[bookmark: _Toc30861276]Selecting rows from a GROUP BY statement (the HAVING clause)

To select a subset of records from a group, a ‘having’ clause can be added to a ‘group by’ statement.

This statement has a similar format to the WHERE clause which is applicable to standard queries.

For example

select
 	 	customer_id,
count(*) as transaction_count,
	sum(amount) as transaction_total
from
 	 	transactions 			group by 	 				customer_id 		having
 	 	transaction_total > 200

Result

	customer_id
	trans_count
	trans_total

	1
	2
	747.24

	2 	
	4 	
	2964.26

	3 	
	1 	
	846.24

	4
	2
	466.44

In this example, only entries with a ‘transaction_total’ amount of greater than 200 are included in the result set.

In SQL the ‘SELECT’, “FROM’, “XX JOIN’, “GROUP BY’, “HAVING’ and “ORDER” clauses must appear in that order, or an error will be generated.

[bookmark: _Toc30861277]Key fields

Data in multiple tables is linked using key fields.

A key field is an otherwise normal data field that is used to link data from one table with data in another table.

Each table should have a ‘primary key’ field which identifies the particular record in the table, such as ‘Customer ID’.

The primary key should have a unique value for each record in the table.

Other tables may contain data items known as ‘foreign keys’. A foreign key is a data item that contains a value, which is the value of a primary key in a different table.

For example, transaction records may contain a ‘Customer ID’ field which allows the transaction record to be linked to the relevant customer record using the INNER JOIN, LEFT JOIN or RIGHT JOIN SQL operations.

[bookmark: _Toc30861278]Joining tables

Processing typically requires that information be retrieved from several different tables.

This is done using a process known as a ‘relational join’.

In the following example, details are extracted from the customer table and the transaction table.

Transaction Table

	Transaction_ID
	Transaction_Date
	Customer_ID
	Transaction_Code
	Product_Code
	Items
	Amount

	
	
	
	
	
	
	

	0000001
	6/01/2008
	0000001
	PURCHASE
	PCDE12
	1
	723.12

	0000002
	12/01/2008
	0000001
	PURCHASE
	PCDE27
	1
	324.12

	0000003
	4/01/2008
	0000002
	PURCHASE
	PCDE12
	3
	623.23

	0000004
	12/01/2008
	0000002
	CANCELLATION
	PCDE27
	1
	123.34

	0000005
	12/01/2008
	0000002
	PURCHASE
	PCDE12
	2
	423.23

	0000006
	5/01/2008
	0000003
	PURCHASE
	PCDE12
	2
	153.24

	0000007
	12/01/2008
	0000004
	REFUND
	PCDE43
	1
	233.22

	0000008
	21/01/2008
	0000004
	PURCHASE
	PCDE43
	1
	823.11

Customer Table

	Customer_ID
	First_Name
	Surname
	Date_Of_Birth

	1
	Stephen
	Adjei
	5/06/1988

	2
	Sammy
	Adams
	26/12/1983

	3
	Linda
	Larigue
	21/04/1976

	4
	Sina
	Siva
	24/07/1983

Extracted Data

	Trans_ID
	Trans_Date
	Cust_ID
	First_Name
	Surname
	Transaction_Code
	Prod_Code
	Items
	Amount

	
	
	
	
	
	
	
	
	

	0000001
	6/01/2008
	0000001
	Stephen
	Adjei
	PURCHASE
	PCDE12
	1
	723.12

	0000002
	12/01/2008
	0000001
	Stephen
	Adjei
	PURCHASE
	PCDE27
	1
	324.12

	0000003
	4/01/2008
	0000002
	Sammy
	Adams
	PURCHASE
	PCDE12
	3
	623.23

	0000004
	12/01/2008
	0000002
	Sammy
	Adams
	CANCELLATION
	PCDE27
	1
	123.34

	0000005
	12/01/2008
	0000002
	Sammy
	Adams
	PURCHASE
	PCDE12
	2
	423.23

	0000006
	5/01/2008
	0000003
	Linda
	Larigue
	PURCHASE
	PCDE12
	2
	153.24

	0000007
	12/01/2008
	0000004
	Sina
	Siva
	REFUND
	PCDE43
	1
	233.22

	0000008
	21/01/2008
	0000004
	Sina
	Siva
	PURCHASE
	PCDE43
	1
	823.11

Note that data from one table has been duplicated in the columns of the result table.

In this example, the surname and first-name of the customer appears beside each transaction relevant to that customer.

This is known as a ‘one-to-many’ join.

Joins may be done in SQL using the ‘LEFT JOIN’, ‘RIGHT JOIN’, ‘INNER JOIN clauses or by specifying multiple tables in the “FROM’ section.

[bookmark: _Toc30861279]Retrieving data from multiple tables continued

Many queries involve retrieving data from several input tables.

Tables must be connected using key fields.

These are generally columns such as customer number, product code, transaction date, etc.

Key fields identify a record, rather than being stored data such as amounts, text values, etc.

Joins may be specified in one of two ways.

Join syntax

 	select
 	 	t.customer_id,
 	 	t.trans_date,
 	 	c.postcode 			from
 	 	transactions t 		inner join
 	 	customer c 			on
 	 	t.customer_id = c.customer_id

Result

	customer_id
	trans_date
	postcode

	1 	2018-01-06 	4235

	1
	2018-01-12
	4235

	2
	2018-01-04
	5432

	2
	2018-01-12
	5432

	2
	2018-01-12
	5432

	2
	2018-01-12
	5432

	3
	2018-01-05
	2342

	4
	2018-01-12
	4342

	4
	2018-01-21
	4342

The join types are

	Inner join

	Only records with matching keys are returned

	Left join

	All records are returned from the first table, and matching records from the second table

	Right join
	All records are returned from the second table, and matching records from the first table

Alias names

Alias names do not affect the result of a query however they can be useful in expressing the query more simply.

For example

This query uses alias names ‘t’ and ‘c’

 	select
 	 	t.customer_id,
 	 	t.trans_date,
 	 	c.postcode 			from
 	 	transactions as t 			inner join
 	 	customer as c
 	on
 	 	t.customer_id = c.customer_id

Alias names are necessary in the rare case in which an input table appears more than once in a ‘select’ statement.

Also, if a column name appears in more than one input table, then an alias name should be used to identify the relevant input table.

This problem typically results in an ‘ambiguous column name’ error.

Columns can also be specified using alias names in the format ‘a.*’.

This indicates that all columns from table ‘a’ should be included in the result set.

More than two join tables.

The following layout is recommended when more than two input tables are included in a join

 	select
 	 	t.customer_id,
 	 	t.trans_date,
 	 	c.postcode,
p.product_code as product,
 	 	cu.description as currency
 	 	
 	from
 	 	transactions as t
 	inner join
 	 	customer as c
 	on
 	 	t.customer_id = c.customer_id 			inner join
 	 	product as p
 	on
 	 	t.product_code = p.product_code 		left join
 	 	currency as cu
 	on
 	 	cu.code = p.currency_code

As the join syntax becomes relatively complex, the visual layout of the query is important so that the query writer and subsequent readers of the code to clearly identify the intention of the query statement.

Result

	customer_id
	trans_date
	postcode
	product
	currency

	1
	2018-01-06
	4235
	PCDE12
	US Dollars

	1
	2018-01-12
	4235
	PCDE27
	Hong Kong Dollars

	2
	2018-01-04
	5432
	PCDE12
	US Dollars

	2
	2018-01-12
	5432
	PCDE27
	Hong Kong Dollars

	2
	2018-01-12
	5432
	PCDE12
	US Dollars

	2
	2018-01-12
	5432
	PCDE12
	US Dollars

	3
	2018-01-05
	2342
	PCDE12
	US Dollars

	4
	2018-01-12
	4342
	PCDE43
	Japanese Yen

	4
	2018-01-21
	4342
	PCDE43
	Japanese Yen

In the case of left joins and right joins, the order of tables in the query may affect the result set. Each table is joined to the result of the previous joins. Field names in ‘on’ expressions should only refer to tables that are specified earlier in the join list.

Where syntax

Joins can also be specified by listing multiple tables in the ‘from’ clause, and matching the keys within the ‘where’ clause.

This syntax is equivalent to using ‘inner join’ on all the joined tables.

A ‘where’ format does not facilitate ‘left’ or ‘right’ joins

 	select
 	 	t.customer_id,
 	 	t.trans_date,
 	 	c.postcode,
p.product_code as product,
 	 	cu.description as currency
 	 	
 	from
 	 	transactions as t, 	 			customer as c, 	 			product as p, 	 			currency as cu
 	where
 	 	t.customer_id = c.customer_id and 	 			cu.code = p.currency_code and
 	 	t.product_code = p.product_code

Multiple join fields

In some cases records will be identified by a single value such as transaction_id, customer_number etc.

In other cases tables may be joined by a number or fields, such as product_class, product_subclass

In these cases the join fields should be listed separated by the ‘and’ keyword.

For example
…
… 	on
 	 	a.product_class = b.product_class and
 	 	a.product_subclass = b.product_subclass

[bookmark: _Toc30861280]Multiple joins to the same table

Although not common it is possible to make a query that joins to a single table multiple times.

For example, a ‘message’ table representing messages between members of a site may contain two foreign keys pointing into the ‘member’ table, one key for the sending member ID and one key for the receiving member ID.

For this example:

	select
		a.name 		as sender_member_name,
		b.name 		as receiver_member_name,
		message.text 	as message_text
	from
		message
	inner join
		member as a
	on
		message.sender_id = a.id
	inner join
		member as b
	on
		message.receiver_id = b.id

*This query is not available in the sample database

In this example the sender member name and receiver member name are extracted from the data by joining to the ‘member’ table twice, once on the sender ID and once on the receiver ID.

[bookmark: _Toc30861281]Cartesian Joins

A Cartesian join involves creating a result set containing all combinations of the records from the input tables.

This is usually unintended.

A cartesian join query frequently takes an extremely long time to run or never finishes, as the number of records in the result table may be extremely large.

For example

 	select
 	 	*
 	from 	 				customer,
transaction

This would not be a meaningful result set, as transaction data would appear beside customer details of a customer unrelated to the transaction.

The lack of a ‘where’ or ‘join’ clause will result in all combinations of records being returned.

In cases where a Cartesian join is generated, the number of records returned is m * n * p *…

Where m, n, p,… is the number of rows in the input tables.

[bookmark: _Toc30861282]Distinct values

In many SQL queries, or parts of a query, the returned values may include duplicated values.

A list of the distinct values can be returned using the ‘distinct’ keyword or a query with a
‘group by’ clause.

For example

 	select distinct
 	 	customer_id 		from 	 				transactions

This query will return a list of the customer_id values that appear in the transaction table.

Without the DISTINCT keyword each customer ID may appear multiple times in the result set.

Result

	customer_id

	1

	2

	3

	4

The SELECT DISTINCT operation may be included in any part of an SQL query where the keyword SELECT is normally used.

For example

select
count(*)
from
(select distinct customer_id from transactions) as x

Result

	count(*)

	4

An alternative to using a DISTINCT statement is to group the duplicated items using a GROUP BY statement.

For example

 	select 	 			customer_id, 		 	count(*) 	
from 	 				transactions 		group by
 	 	customer_id

Result

	customer_id
	count(*)

	1
	2

	2 	4

	3
	1

	4
	2

In general the DISTINCT keyword is simpler and should be used in preference to a GROUP BY statement for selecting distinct values in a query.

[bookmark: _Toc30861283]Union

The ‘union’ statement can be used to combine the results of two queries into a single result set.

select * from

(select * from sample_list

union all

select * from sample_list_ext) a

‘union all’ combines the two result sets, while ‘union’ selects only the distinct records

Result

	id
	product_code

	1
	PCDE43

	2
	PCDE52

	3
	PCDE12

	1
	PCDE27

	2
	PCDE12

[bookmark: _Toc30861284]The ‘IN’ operator

The SQL ‘IN’ operator is an extremely useful part of the SQL language.

An IN operation allows records to be selected from one table or tables based on a second operation.

For example

select
 	customer_id, 	first_name,
	 	surname
from
	 	customer
where customer_id in
(
	 	select distinct customer_id from transactions
)

This query will return a list of the customers, complete with their names, for all customers that have at least one transaction.

Result

	customer_id
	first_name
	surname

	1
	Stephen
	Adjei

	2
	Sammy
	Adams

	3
	Linda
	Larigue

	4
	Sabina
	Patel

[bookmark: _Toc30861285]Subqueries

An SQL query can be used in place of a table name. This is known as a subquery and is an advanced facility in SQL.

Subqueries of this type are not widely used in practice.

The query should be placed within brackets and used in place of a table name within another query.

For example

select
	 	count(*)
from
	 	transactions as t
inner join
(
	 	select distinct
	 	 	product_code
from product
) as p
on
	 	t.product_code = p.product_code
 	 	

In this example a bracketed query has been used in place of a table name.

In this case, a count of records is calculated from transaction records that have a corresponding record in the ‘product’ table.

The statement within the brackets is equivalent to a table containing the same data.

Result

	count(*)

	9

[bookmark: _Toc30861286]Correlated subqueries

Correlated subqueries are included here for the sake of completeness however they are highly technical and are not usually required in practice.

A Correlated Subquery occurs when an inner query refers to a value in an outer query.

For example

select
customer_id,
first_name,
surname
from
customer as customer_table

where
(
select SUM(amount) as customer_total from transactions where
customer_id = customer_table.customer_id
) > 500

This query selects customer details for customers that have purchased at least $500 worth of products.

This particular result could also have been achieved by using a GROUP BY and HAVING statement.

	customer_id
	first_name
	surname

	1
	Stephen
	Adjei

	2
	Sammy
	Adams

	3
	Linda
	Larigue

Note that customer number 4 does not appear in this table as they have only purchased products to the value of $233.22.

[bookmark: _Toc30861287]NULL values

NULL values represent missing data.

This may indicate that a data item is not known, or is not relevant in that particular case.

Visual tools may display this result in several formats including NULL, (null), a blank field etc.

In ‘where’ expressions, the condition is specified as ‘columnname IS NULL’ or ‘columname IS NOT NULL’.

For example

 	select 	 			customer_id, 		 	amount
 	from 	 				transactions 		where
 	 	amount is not NULL

Result

	customer_id amount

	1 	723.12

	1 	324.12

	2
	623.23

	2
	425.54

	2
	423.23

	2
	423.23

	3
	153.24

	4 	233.22

	4
	823.11

[bookmark: _Toc30861288]Inserting, Deleting and Updating data

The following sections describe SQL statements for modifying data.

These statements are not executable in the test environment.

Extreme caution should be used when using these statements. In many cases it is not possible to recover data that is accidently altered or deleted.

For example

 	delete from table1

Will delete all records from the database table ‘table1’.

Due to the volume of data in large databases there is generally no ‘Undo’ function. Any accidently altered or deleted data can only be recovered by restoring the data from a backup.

[bookmark: _Toc30861289]Inserting records

Individual rows can be inserted into a table using the following syntax

INSERT INTO tablename (list-of-column-names) VALUES (list-of-values)

For example

insert into
currexchange (name, amount, exchdate)
values
('name1', 12.52, '2013-02-01')

Text and date values should be surrounded by single quotes.

Date values are generally entered in the format ‘YYYY-MM-DD’ and datetime as ‘YYYYMM-DD HH:MM:SS’

Importing large quantities of records is dependent on the functions provided by the database environment.

[bookmark: _Toc30861290]Updating records

Tables can be updated using the following syntax.

UPDATE tablename SET list-of-assignment-expressions
WHERE where-expression

For example

update currexchange
set
amount = 32.23
where
exchdate = ‘2017-02-01’

This expression will set the value of the ‘amount’ field to 32.33 for every record in the
‘currexchange’ table where the ‘exchdate’ field has a value of ‘2017-02-01’.

If the ‘WHERE” expression is omitted all records in the table are updated.

Multiple columns can be updated in a single statement by separating the fields to be updated by commas. For example

update
currexchange
set
amount = 32.23, date_updated = ‘2018-01-01’
where
exchdate = ‘2017-02-01’

 	
Implementations vary in their ability to perform updates on views created by joining several tables.

[bookmark: _Toc30861291]Deleting records

Deletion takes the format

DELETE FROM tablename WHERE where-condition

For example

delete from currexchange where exchdate < '2017-03-04'

This statement will delete all records from the ‘currexchange’ table that have a value of ‘exchdate’ that is earlier than fourth March 2017.

If the ‘where’ expression is omitted all records are deleted from the table.

Exercise extreme caution when using the DELETE statement as data that is deleted from a database cannot generally be recovered except by restoring data from a backup.

[bookmark: _Toc30861292]Database design practices

The bulk of this book assumes that the reader is querying established databases or data warehouses.

However, if you are creating database tables this section contains some guidelines to good design practice.

1. Every table should have a primary key. This may be a numeric, autonumber field with a field name such as ID, or it may be a field that has a business meaning such as
‘customer id’.

This field is the first field in the table and every record in the table will have a distinct value for this data item.

2. Data fields should be property coded to the correct data type – numeric, text, date, datetime etc.

3. Tables should not contain redundant data. This means that a single item of data should not repeated in many rows of the table.

When this happens, the redundant data should be split out into a separate table, and linked to the main table by a key field data item.

As an example, transactions should not contain customer data. A transaction should contain a single field named ‘customer_id’, which links to a record in the customer table.

In this way, when customer data changes it only needs to be changed in a single record.

Duplicated data creates extreme problems as it frequently becomes out-of-date, where some instances of the data item have been updated and some haven’t.

4. Field names and table names should be given meaningful names that accurately reflect the data that is stored in them.

5. It is generally good practice to include ‘created_date’ and ‘modified_date’ fields in user-updated tables. These fields contain the date/time that the data record was created and last modified respectively, and also possibly the userid of the system user who made the change. In larger systems a full audit trail of changes may be kept, with every data update recorded as a record in an audit trail file.

6. Be aware of internationalization issues where the system may be used in multiple countries, such as different date formats used in different countries.

7. Where possible, drop-down lists of values should be implemented in the online system, rather than free-format data entry fields. For example, if a list of cities is provided in the online system for the user to select from, this will provide for more reliable searching and subtotaling that an alternative arrangement where the user can type any text into the ‘city’ field. In the second alternative system users will invariably type in various spellings, punctuation etc, which would make searching on this field unreliable.

8. Data fields that will be used in searching should have an index associated with them. An index is a data structure that allows the database engine to directly access a required record, rather that having to search every record in the table to find the required record, which may be a very slow operation in the case of large data tables.

9. Physical deletion of data from the database needs to be in line with the company’s data retention and privacy policies and relevant legislation. In some cases it is necessary to retain data in the database but flag it as inactive for a certain number of years. In other cases data should be physically deleted on request for privacy reasons.

[bookmark: _Toc30861293]About the Author

Mark Laurence McIlroy has an undergraduate degree in Computer Science and Applied Mathematics from Monash University.

He also has Masters degrees in Applied Finance and Financial Planning.

He has extensive experience consulting in the banking and government sectors in Australia in large SQL data warehouse environments.

Mark lives with his wife in Melbourne, Australia.

[bookmark: _Toc30861294]Appendix A – Implementation variations

The SQL statements described here should be executable in most SQL environments.

Some differences may occur with issues such as specifying date constants and string concatenation.

For example

‘1990-04-12’

to_date(‘01JUL2018’)

etc.

Major implementations frequently have added syntax which is not compatible across alternative implementations.

Examples include variations on join types such as CROSS JOIN etc.

[bookmark: _Toc30861295]Appendix B – Summary of operators

Operators

Mathematical

	* 	
	Multiplication

	/ 	
	Division

	+ 	
	Addition

	- 	

Relational

	Subtraction

	< 	
	Less than

	<= 	
	Less than or equal to

	> 	
	Greater than

	>= 	
	Greater than or equal to

	= 	
	Equal

	<> 	
	Not equal

	!= 	

String

	Not equal

	|| 	

Aggregate

	Concatenate

	sum 	
	Sum

	avg 	
	Average

	count
	Count

	min 	
	Minimum value

	max 	
	Maximum value

	stdev
	Standard Deviation

[bookmark: _Toc30861296]Appendix C – Other statements

Other Issues

SQL includes the following groups of statements.

These statements are not widely used as these functions are more easily performed using visual database administration tools.

Data Definition statements

Statements for creating tables and altering table formats

CREATE TABLE transactions (id INTEGER NOT NULL, transact_date DATE, amount DOUBLE, description VARCHAR(255), PRIMARY KEY (‘id’))

Administration statements

Statements for creating user accounts and assigning security privileges.

GRANT SELECT ON TABLE1 TO USERNAME1

Descriptive statements

Statements for returning the information about the database, such as the list of tables.

SHOW TABLES

 	4

 	4

 	4

