A guide to writing Excel formulas and VBA
macros

Mark Mcllroy

www.markmcilroy.com

© Mark Mcllroy 2016, 2018. All rights reserved.
ISBN 978-1530079445

Edition 6

http://www.markmcilroy.com/

Other books by the author

Introduction to the Stockmarket
The Wise Investor
SQL Essentials

The Art and Craft of Computer Programming

Contents

IO [o1 10T 0T i o] o [P PPPPPPPPPPPPP 5
2. SEeCtiON A — EXCEl FOIMUIASuuuuiiiiiiiiiiiiiiiiiiiiiieiitiiaeseeebseeeseeeeeeseeseesssaessbssbssbssseeesnssnsssessnnnes 5
2.1 Introduction to EXCel fOrMUIASccoiiiiiiiee e 5
2.2 Referring 1o Other CElIS ... e 6
P T = - TS (ol o] o 1T r= 1110 1 TR 7
N = - 1 o 0 T 1o o 1 7
2.5 LOQICAI OPEBIALOIS.o 8
2.8 NAIMIES ittt et e e e e e bbb e e e et e e arbb e e e 9
2.7 Table IooKUP FUNCHIONSccoiiiiice e e e e e e e e e 9
P T € To T | IR T= T 9
2.0 S OIV T e 10
2.10 PiIVOLTADIES ... 10
3. Part B —WrtiNG VBA IMACIOSuuuuuuiuiiiiiiiiiiiiiiiiiiiis s nessssnennnne 12
3.1 Setup up EXCel fOr MACIOSccoiiiiiiiiiiii 12
3.2 VBA MEBCIOS ...ttt e et a e e et e e raa s 13
3.3 Returning a value from your fUNCLON.............coiiiiiiiiiii e e 14
I L= 1 0[] (=] £ T PP 14
TR T {1 {11 o] o USRS 15
3.6 Local variables ... 16
T A B - 1= 1Y 011 PP P PO PP PPRSUPPPPPPPTN 17
IR I 0] ¢ 011 41T o1 TP 17
IR B 0] 0151 = 4 | £ T PSP PUPPPPPTR 18
TN O |1 = = 0 1 T= o | PP 19
3.11 BOOIEAN EXPIrESSIONScciiiiiiieeiee et 21
T8 2 V1V o 11 1= (o o] o ST UUSUPPPPRURN 22
700 I T o T (o o o 1P UUSUPPPPRPRN 22
3.13 Using WOrksSheet fUNCHONSoooiiiiiiiiii 23
3.14 Accessing data on a WOrkSheet.............ooooiiiiiiii 23
3.16 Running a macro from a separate WOrkShEet..........ccooiiiuiiiiii i 24
I G I B =T o 0T [[T TP 25
S.16 ETOr NANAING ..ttt 25
3.16 SOMeE USETUI TUNCLIONS ... e et e e e e e e e e e e e 26
3.16 Writing your own functions and SUDIOULINES............oiiiiiiiiiicicicn et 26

3.17 Good programming PraCliCe..........ccuuiiiiiiiiiiiiiiiii ittt 28

4 Sample EXCEl MACIO COURuuuuiii i e e e e et e e e e e e ettt e e e e e e e eaaraaaa s 29
4.1 Example 1 — Calculate the value of a ‘call option’.............coeiiii i, 29
4.2 Example 2 — calculate the ‘implied volatility of a call option’cccccciiiiiiiiiiininnns 30
4.3 Example 3 — Search a table on a worksheet and return avalueoooovveeiiinnnnnn. 32
4.1 Example 4 — Calculating tax (AUSLralia)uueeiiieeeiieeicee e 33
5 RESOUICES ...ttt ettt e e e et ettt b e e e e et e et eeb e e e e e e e e eerrbaas 34
6 ADOUL the QUINOT ... e e e e e e e s 35

1. Introduction
As the title suggests this book is an introduction to writing Excel formulas and macros.
The book assumes only a basic familiarity with Excel.

The book is not intended to be a comprehensive guide to Excel. Excel is a complex system that
has many functions, many of them are rarely used.

The book covers the most commonly used functions, and includes everything you need to know
to write basic or advanced formulas and macros.

This book is in a condensed format. You will need to read each section in turn and then
experiment with formulas that are similar to the examples that are presented in the text.

This book is based on Excel 2013, however the material is relevant to most versions of Excel.

2. Section A — Excel Formulas

2.1 Introduction to Excel formulas
Let’s start with a few basics.

As you probably know, every cell on the worksheet page is referred to by a reference such as
D7.

The letter refers to the cell column (as shown along the top of the worksheet area), and the
number refers to the cell row (as shown down the left hand side of the worksheet area).

Now, enter the value 100 in cell A1, which is the cell at the top-left of the worksheet area.
Go to cell B3 and type in the value “=A1".
As you can see, the value 100 is now also displayed in cell B3.

If you change the value in cell Al to 200, say, you can see that the value in cell B3 is
automatically updated.

Very basic, but this is an Excel formula.

2.2 Referring to other cells

There are three ways to refer to other cells in Formulas: “Absolute” references, “Relative”
references and “names”.

Names are discussed in a later section in this book.
Relative references have the format =A1l
Absolute references have the format =A1

Both formulas produce exactly the same results. The difference appears when you copy-and-
paste a formula to a different area of a worksheet.

When you copy-and-paste, the relative references are modified to match the new position of the
formula on the worksheet.

This is very useful and allows you to copy a formula into a large number of cells, and have it
automatically updated.

Absolute references such as =A1 are left unchanged when the formula is copy-and-pasted to
a different area of a worksheet.

It is also possible to enter a value where only the rows are updated, such as =$A1, or when only
the columns are updated such as =A$1. These forms are not widely used however they are
quite useful once you are familiar with them..

A useful feature of Excel is that, when you are editing a formula, if you press the F4 key Excel
will change the cell reference you are on from a Relative reference to an Absolute reference or
vice versa, which saves a lot of typing dollar signs.

Finally it is possible to refer to cells on a different worksheet to the one you are currently working
on.

If the other worksheet is in the same workbook, these references have the form
=SheetNamellAl

If the other worksheet is in a different workbook, these references have the form
='[WorkSheetName]SheetName1’!A1

In practice the easiest way to use these references is to type = in the new cell, then click the
mouse on the target cell and Excel will automatically generate the entire reference for you.

I would generally recommend against referring to cells in anther workbook. Over time file names
change and files are moved, which means that links of this type are often broken. It can then be
difficult to determine what how a worksheet with broken links is supposed to work.

Referring to different sheets in the same workbook is fine.

2.3 Basic operations

The basic operations in an Excel formula are listed below.

+ Addition

- Subtraction

* Multiplication

/ Division

A Exponentiation
0 Brackets

An example of a Excel formula is =A1 + (A2 / A3)

Try entering this formula in cell B3 and typing in values in cells A1, A2 and A3.

2.4 Basic functions

Excel contains a large number of functions. Descriptions of these can be found in the Excel help
or on various websites (See the Resources section later in this book).

The most useful functions are listed below
ABS() Returns the absolute value of a number
SUM() Returns the total of a set of values

AVERAGE() Returns the average of a set of values

MIN() Returns the minimum value of two values
MAX() Returns the maximum value of two values
ROUND() Rounds a value to a specified number of decimal places.

For example, =MAX(ABS(A1) * 0.001, 19.95) will return the value that is 0.1% of cell Al or
19.95, whichever is greater.

Range formulas such as SUM() require a range cell reference.

This is entered in the form A1:A10, for example =SUM(A1:A10). This formula example will add
up all the values in the cells Al through to A10 and display the value in the cell that has the
formulain it.

As with single cell references you can use Absolute or Relative references in your ranges.

2.5 Logical operators
Excel allows you to enter ‘Logical’ operators in cells.
These are listed below
IF(formulal, formula2, formula3)
AND(formulal, formula 2')
OR(formulal, formula 2)
The ‘IF” operator allows you to test a condition and return a different result depending on
different conditions.
For example =IF(A1 > 10, 10, Al)

This formula will test the value of cell Al. If it is greater than 10, the result returned will be 10,
otherwise the result will be the value of cell Al.

Another example, =IF(AND(Al > 10, B1 < 20), 10, A1)

As you can see these formulas are starting to get a little complicated. However if you work on a
lot of spreadsheets you will eventually have to write formulas such as these.

The example above tests the values of both cells Al and B1. If Al is greater than 10 and B1 is
less than 20, then the result of the formula will be 10, otherwise it will be the value of cell Al.

These operations can be nested to multiple levels in a single formula. If you are going to nest ‘IF’
statements they must be in the following form

=IF(conditionl, resultl, IF(condition2, result2, IF(condition3, result3, result4)))

2.6 Names

In addition to Absolute and Relative references, you can also refer to other cells in formulas by
giving the cell a name.

This can simply complex spreadsheets, particularly when you are using several worksheets
within a single workbook.

To give a cell a name, click on the cell, right click, and select ‘Define Name’.

Then type in a name for the cell and click ok.

For example, define a name for the cell Al as Fee_rate

You can then type formulas anywhere within the workbook using a syntax such as

=Fee _rate * 2

2.7 Table lookup functions
The next functions to consider are the table lookup functions.
These functions are VLOOKUP() and HLOOKUP() and are very useful.
| will focus on VLOOKUP() as it is more widely used.
The VLOOKUP() function allows you to search a table of results and extract an entry.
For example,
VLOOKUP(Al, D1:E100, 3, FALSE)
This formula assumes that the current worksheet has a table of figures in cells D1 to E100.

The formula will search the first column of the table for the value in cell A1, and if it finds a
matching entry in the table it will return the value in the 3" column of the table into the result cell.

The final parameter will usually be FALSE, which specifies that an exact match must be found in

the table. A value of TRUE in this parameter will result in the next best entry being found in an
approximate search.

2.8 Goal Seek

Excel contains a “Goal seek” function. This is found on the Data — What If Analysis menu.

Goal seek allows you to change a model to produce a certain value, by having Excel
automatically modify an input value.

For example, say that you produce a financial model in Excel that models the income a client
can receive in retirement from their retirement funds.

You want to select the maximum income that your client can draw from their retirement fund,
such that their funds will last until they are 90 years of age.

To achieve this, set up a spreadsheet with the income drawn each year and the declining
balance of their retirement fund.

Then run a “Goal Seek” function, targeting the fund balance at age 90 cell to zero, by modifying

the income drawn each year cell.

2.9 Solver

Solver is a more powerful version of the ‘Goal seek’ function.

Solver enables Excel to search for the minimum or maximum value that a model can produce,
by varying one or more input cells.

You can also specify ‘constraints’, which involve the minimum or maximum values that are
allowed in various cells within the model when Excel is searching for a solution.

Solver is not installed by default. To activate Solver, click File, Options, Add-Ins, Go, tick the
‘Solver Add-In’ box and click ok.

Now you should see ‘Solver’ on the Data menu.

Please note that having Solver activated may slow down Excel when starting up, so it is
probably a good idea to only install it when you are actually using it.

The Solver screen is fairly self-explanatory.

2.10 Pivot tables

It is beyond the scope of this book to give a comprehensive review of pivot tables.

10

However an introduction is in order.

If you have a set of data, such as a set of financial transactions, Excel can summarise your data
into a table.

This is done using the functionality known as a Pivot Table.

For example, you can produce a table that has one row for each month, with totals for that
month, and a total for the year, from a large number of input transactions.

The Pivot Table functionality is relatively complex and varies with each version of Excel.

11

3. Part B — Writing VBA Macros

3.1 Setup up Excel for macros

There are a few preliminary steps that must be taken before you can start writing VBA macros.

First that you must add the “Developer” option to the Excel main menu. This option is not turned
on by default.

To start, open a new blank worksheet.
Then click the following options

File

Options

Customise Ribbon

This sequence will display a large box with several panes in it. In the right-hand pane, find the
entry labelled “Developer” and click on the box to place a tick in the box. Click OK.

You should then be back on the new blank worksheet, however the word “Developer” should
now appear on the Excel menu bar.

12

3.2 VBA Macros

You are now ready to write your first VBA macro.

Click on the Excel menu bar “Developer” and then click on “Visual Basic”
This sequence will bring up the Excel VBA development environment.
Click on “Insert” on the top menu bar then click on “Module”

This should bring up a blank window, ready for you to write a VBA macro.

Type in the following text

Public Function my test macro(paraml as double)
my text macro = paraml * 2

End function
Now click File on the menu bar and then “Save”
This will bring up the file Save dialog box.

Note that at this point you must click on the ‘Save As Type” drop-down list and select “Excel
Macro-Enabled Workbook” BEFORE you enter a file name, select a folder and click Save.

After saving, Excel will return you to the VBA development screen.
Now you can click “File” on the menu bar and click on “Close and return to Microsoft Excel”.
Now, on the blank worksheet, type 100 in to cell Al.

Then type the following formula into any cell
=my test macro(Al)

Now you should see the value 200 in your new cell.

Congratulations — a working VBA macro of your own design.

13

3.3 Returning a value from your function

As you can see from the previous simple example, you return a value from your VBA macro
function into the calling worksheet by assigning a value to the function name using the ‘=’
operator, for example:

function name = value

In this example, the value of the variable ‘value’ will be returned into the cell of the calling
worksheet.

3.4 Parameters

Most macros will have at least one parameter. This is the list of names after the word ‘Function’
and the name of the function.

Excel VBA is a line based language. This means that each statement must be on a separate
line. Each statement must start and finish on a single line. If you want to continue an individual
statement on to the next line, place space and an underscore “_” at the end of the line.

For example

Public Function my test macro(paraml as double,
param2 as double,
param3 as string)

End Function
Take note of the position of every item, including commas. Computer software is demanding and
each item must be entered exactly as defined by the language.
The value entered after the word “As” is the type of the parameter.

The most commonly used types are the word “double”, which represents a numeric value, and
“string” which represents a short item of text.

The word “double” is shorthand for “double precision floating point variable”. This is accurate to
approximately 15 digits of precision.

There is also a data type “single” which is accurate to approximately 7 digits of accuracy. Single
precision data was originally used by programmers to save computer memory but there is no
practical reason in the modern world to use this data type.

Parameters can be used in expressions to calculate values.

14

For example,
Option Explicit
Public Function my test macro(paraml as double, param2 as double)

my test macro = paraml * param2

End Function

You can test this change to your new macro by entering it as shown, saving the VBA macro
screen, and entering the following in a cell on your new worksheet.

=my test macro(Al, A2)

If you enter values into the cells A1 and A2 the multiplication result of your two values should
appear in the cell that you entered the formula in.

The words ‘Option Explicit” at the top of your macro file tells Excel to demand that all the variable
you use in your code are properly declared. It helpful to include this statement.

If you want to change the value of a parameter within your function, it is good programming
practice to use the word “ByVal” before the parameter definition to indicate that you only want to
use the parameter value in your function, you are not attempting to change its value in the
source worksheet.

For example

Public Function my test macro(ByVal paraml as double,
param?2 as double)

paraml = paraml / 100

my test macro = paraml * param2

End Function

3.5 Expressions
VBA expressions follow the natural path that is familiar from mathematical expressions.

For example

my test macro = (paraml * param2) / param3 + 10

15

The operators are

+ Addition

- Subtraction

* Multiplication

/ Division

A Exponentiation

0 Brackets

& Concatenate two strings, i.e. add one to the end of the other

A wide range of build-in mathematic functions is available, see the “Resources” section at the
end of this book.

You can get help on a function by highlighting its name in a VBA code window and pressing F1

Some examples are

Abs(paraml) return the absolute value of a number
Sqr(paraml) return the square root of a number
Log(paraml) return the natural logarithm (base ‘e’) of a number

result = Abs(Log(paraml) + param?2)

An example of a string expression is

formal name = last name & “, “ & first name

3.6 Local variables
Once your calculations get a little more complex you will need to use “local variables”.
These are values that are defined only within a single function.

For example, modify your test macro to the following code.

Public Function my test macro(paraml as double, param2 as double)

Dim valuel as double
Dim value?2 as double

valuel = paraml * param?2

16

my test macro = valuel

End Function

The value of these variables “value1” and “value2” only applies within the boundaries of the
Function and End Function keywords of this function.

You can use the same names in a different macro function, in which case they will have
separate values from your first function.

By now you have probably noticed that many of the keywords in VBA seem to have almost
meaningless names.

VBA, more formally called Visual Basic for Applications, builds on a long history of the BASIC
language stretching back to the 1960’s.

Many of the keywords are based on historical meanings.

For example, the word ‘Dim’ which is used for declaring local variables is short for the word
“Dimension’, which was initially used to specify the dimensions of an array.

3.7 Datatypes

The main data types that you will need to use are “double”, “integer”, and “string”.

The “double” data type can represent any practical number, including a decimal part.

The “integer” data type can only represent whole numbers, but should be used when you
declare a variable that will only hold whole numbers, such as the number of times to repeat a

loop.

A “string” is a small piece of text, such as a name. String values have double quotes around
them, such as the code below

client name = “Fred Smith”

3.8 Comments

You can enter comments within your code files that are intended for a human reader, and are
ignored by the program system.

This is done by typing a single quote character.

17

Anything after the quote character to the end of the line will be displayed in green and is ignored
by Excel when it is executing your code.

For example:

‘ Written by Mark McIlroy, 15/02/16
This is a test function

The result is the value paraml * param?2

Public Function my test macro(paraml as double,
param2 as double,
param3 as string)

Dim valuel as double
Dim value2 as double

valuel = paraml * param?2 ‘'main calculation

my test macro = valuel

End Function

Comments are extremely useful when you come back to modify the code on a future date, or
when some other person needs to work on your code.

3.9 Constants

As you do more programming you will find that you use fixed values quite often.

There is a way to specify fixed values within your code so that they are easier to read and
modify. This is done with ‘constants’

Constants are specified by placing code in this format at the top of the code window.

Const CONSTANT NAME As DATA TYPE = VALUE

For example
Const CURRENT MODELS NAME As String = "Portfolios 17.11.2015.xlsm"

You can then use this name in your code in the place of the actual value, such as the code
below:

18

workbook name = CURRENT MODELS NAME

Constants make your code easier to read and modify and reduces the chance of bugs occurring
in your code. It is recommended that everywhere you use a constant value you declare it at the
top of the file.

3.10IF statements

The VBA code that we have looked at so far uses variables, functions and mathematical
operators.

However thus far you probably could have used a standard Excel worksheet to produce the
same results.

The following sections identify the more powerful features of VBA.
An ‘if’ statement allows you to test a condition.

For example consider the macro code below

If paraml > 10 Then
my test macro = 10
End If

You can also specify an alternative expression, such as the code below.

If paraml > 10 Then

my test macro 10

Else
my test macro = 20
End If

This statement will compare the value of param1 to 10, and if it is greater than ten it will set your
result to 10, otherwise it will set it to 20.

It is also possible to chain ‘if’ statements into longer sets of statements such as the example
below

If paraml > 10 and paraml < 20 Then
my test macro = 10
Else
my test macro = 20
ElselIf paraml >= 20 and paraml < 30 Then

my test macro = 30

ElseIf paraml >= 30 and paraml < 40 Then

19

Else

End If

my test macro

my test macro

40

50

20

3.11Boolean expressions

‘If statements and ‘while’ loops (which we will see further on) use what is known as ‘boolean’
expressions.

The Boolean operators are

a=b equal

a<>b not equal

a<b less than

a<=b less than or equal to
a>b greater than

a>=b greater than or equal to
aAndb both TRUE

aOrb either one TRUE

Not a if a is FALSE

You can declare variables that will the True or False using a statement as below

Dim found as Boolean

Some developers prefer to use integer variables which have the same effect, such as

Dim found as Integer

You can then use statements similar to the ones below

found = False
If not found then

‘' insert code here
End If

21

3.12While loops

You can repeat a section of code using a construct known as a ‘while’ loop.

This has the general form below

While expression
' code here
Wend

For example

count = 0

While count < 10
' code here

count = count + 1
Wend

The code inside this example loop would be executed 10 times

3.13For loops
There are several loop statements in VBA.
The most commonly used are the ‘while’ loop and the ‘for’ loop.

The ‘for’ loop has the general form

For variable = expressionl To expression2
‘' code here

Next

For an example see the code below

For r = 1 To 1000
' code here

Next

In this example, the code inside the loop will be executed 1000 times

22

Loops can be ‘nested’ inside each other in any combination, such as in the example below.
For day = 1 to 31
For account = 1 to 100
‘' code here

Next
Next

You should be aware that code inside nested loops can be execute an large number of times, so
this may slow your system down somewhat.

In the following example, the code inside the inner loop will be executed 1,000,000 times.
For a = 1 to 1000
For b = 1 to 1000
‘' code here

Next
Next

3.13 Using worksheet functions
VBA has a fairly limited number of mathematical functions.

A much wider range of functions is available by accessing the Excel ‘worksheet functions’.

This can be done with an expression similar to the following

valuel = Application.WorksheetFunction.FUNCTION NAME ()

for example

valuel = Application.WorksheetFunction.Norm S Dist (da, True)

3.14 Accessing data on a worksheet

Good programming practice suggests that a function should derive all the data that it needs from
the values of its parameters.

However there are cases where you might need to access the values on a worksheet directly

from within a macro function, such as when you need to search a table of values that appears on
a worksheet.

23

The following example accesses the value in cell row ‘r’, column ‘2’ on a worksheet directly.

Const MODELS NAME as string = “Portfolios 15.12.16"

Const YIELDS as string = "Yields & MER"

valuel = Workbooks (MODELS NAME) .Worksheets (YIELDS) .Cells(r, 2).Formula

If you want to use this method you will need to have the workbook open in Excel when you run

the macro.

3.16 Running a macro from a separate worksheet
The above examples explain how to write a save a VBA macro within a workbook.

However you might wish to save a macro in a workbook and then run this macro from other
workbooks.

This can be done by writing and saving the workbook that has the macro in it. Open this
workbook in Excel, and make sure that you click on the ‘Enable Macros’ button if it appears
when you open the workbook.

Then go to the new workbook that you are going to call the function from.

Click on the cell that you want to use to call the macro.

Click on the ‘Fx’ button on the menu bar.

This will bring up a dialog box.

Click on the ‘Or select a category’ drop-down list.

Scroll down and click on ‘User defined’

You should now see a list of all available macros that you have written that are in open
workbooks, and you can simply click on the appropriate one.

It is also possible to make macros permanently available by making your own Excel Add-in.
This is done by saving your macro workbook with a file type of “Excel Add-in”
Then go to

File

24

Options
Add-Ins
Manage — Excel Add-ins — Go

And click on the name of your new Add-in file.

3.16 Debugging

When you are looking at a VBA code window, you can use the following shortcut keys for
debugging the code.

F9 Inserts a ‘breakpoint’ on the line the cursor is on. Excel will stop executing the
macro when it reaches this line, and you can examine the value of various
variables.

Shift-F9 Displays the value of the variable that is highlighted by the cursor.

F8 Execute the line of code that the cursor is stopped on and step to the next line.

F5 Continue executing the macro after it has stopped, stopping only at the next
breakpoint line or the end of the macro.

3.16 Error handling
By default, when a macro encounters an error, it simply stops without displaying any error
message. This is not very helpful.
You can display an error message for errors by using the following code.

At the top of your function, add the following line of code

On Error GoTo err_code

25

At the end of your function, add the following code

Exit Function
err code:

MsgBox Err.Description

This code will have the effect of displaying an error message whenever the Excel macro
encounters an error and stops.

3.16 Some useful functions

Some useful Excel VBA functions are listed below.

Open "c:\tmp\solutions.txt" For Output As #1

Opens a file for writing to. Ensure that the folder that you use is one that you have permission to
write to.

Print #1, "shortest path", shortest path

Writes data out to your output file.

Close #1

Closes your output file.

MsgBox "Finished"

Displays a message in a box on the screen.

3.16 Writing your own functions and subroutines

As you write more complex and larger blocks of code, you will eventually have to break your
VBA module files up into a number of functions and subroutines.

A subroutine is a block of code that you can call multiple times within your program.

26

It is declared in the following way
Private Sub your sub name (paraml as typel, paramZ2 as type 2)
‘' code here

End Sub

Replace the names within this definition with names that are appropriate to your code, and use
however many parameters you need to.

To call the subroutine, simply place the name of the subroutine on a line by itself were you want
to call it, as below

your sub name (paraml, param2)
A subroutine cannot return a value.
If you need a block of code that can return a value, use a private function instead.

This is declared in the following way

Private Function your func name(paraml as typel, param2 as type 2)
‘' code here
your function name = return value

End Function

Replace the names within this definition with names that are appropriate to your code, and use
however many parameters you need to.

To call the function, use the name of your function in an expression, as below.

new value = your func name(paraml, param2)

See the examples at the end of this book as a guide.

27

3.17 Good programming practice
Entire books can, and have, been written on good programming practice.

The author has written several books on programming and Computer Science for the interested
reader.

However, Excel macros are usually written by practitioners in Finance, Social Sciences etc
rather than professional programmers, so a few basic notes only may be in order.

Make sure that you lay out the code with plenty of blank lines between statements. This is
extremely important and will ensure that a reader has some chance of understanding the code
when they come back to work on it at a future date.

When you have an ‘If’ statement or ‘While’ loop, indent the code inside the statement by one tab
stop. This is very important to enhance the readability of the code.

Include plenty of comments. You really can’t have too many comments.

Don’t use a variable to mean two different things inside a function. When this occurs declare two
separate variables and use them separately.

Try to use names for variables that have some meaning. Avoid generic names such as ‘x’, y’ ,'a’
and ‘b’ unless they actually have some meaning in the context of the particular function.

28

4 Sample Excel macro code

4.1Example 1 — Calculate the value of a ‘call option’

' Calculate the premium (i.e. value) of a call option

' strike in dollars

spot in dollars

' vol (volatility) as decimal volatility per year

int rate risk free interest rate in decimal per year
' days

Public Function call premium(ByVal strike As Double, ByVal spot As Double,
vol As Double, int rate As Double,
ByVal days As Double)

Dim da As Double
Dim db As Double

spot = spot * 100
strike = strike * 100
days = days / 365

da (Log (spot / strike) + int rate * days) / (vol * (days "~ 0.5)) + _

0.5 * vol * (days ~ 0.5)
db = da - vol * days ~ 0.5
call premium = spot * Application.WorksheetFunction.Norm S Dist (da, True)

- strike * Exp(-int rate * days) * _
Application.WorksheetFunction.Norm S Dist (db, True)

End Function

29

4.2Example 2 — calculate the ‘implied volatility of a call option’

' Calculate the Implied Volatility of a call option

' strike in dollars

' spot in dollars

' prem premium

int rate risk free interest rate in decimal per year
' days

Public Function call implied volatility(ByVal strike As Double, ByVal spot As Double,
ByVal prem As Double, int rate As Double,
ByVal days As Double)

Dim low As Double

Dim high As Double
Dim vol As Double

Dim premium As Double
Dim diff As Double
Dim da As Double

Dim db As Double

spot = spot * 100
strike = strike * 100
days = days / 365

low = 0
high =1
vol = 0
premium = 0
diff = 100

While (diff > 0.001 Or diff < -0.001)

diff = premium - prem
If premium > prem Then

high = vol

vol = low + (vol - low) / 2
Else

low = vol

vol = vol + (high - vol) / 2
End If

da = (Log(spot / strike) + int rate * days) / (vol * (days "~ 0.5)) + 0.5 *
vol * (days ~ 0.5)

db = da - vol * days »~ 0.5
premium = spot * Application.WorksheetFunction.Norm S Dist(da, True) -
strike * Exp(-int rate * days) * _

Application.WorksheetFunction.Norm S Dist (db, True)

30

Wend
call implied volatility = vol

End Function

4.3Example 3 — Search a table on a worksheet and return a value

Const MODELS NAME As String = "Portfolios 17.11.2015.xlsm"

Const YIELDS As String = "Yields & MER"

v

' Return "Y" or "N" for if a security/fund has brokerage applied to it (i.e.

listed securities, no for managed funds)
\l

Public Function has brokerage(security fund As String) As String

Dim r As Integer
Dim found As Integer

found = False
has brokerage = ""

For r = 1 To 1000

If Workbooks (MODELS NAME) .Worksheets (YIELDS) .Cells (r, 2) .Formula =

security fund Or

Workbooks (MODELS NAME) . Worksheets (YIELDS) .Cells(r, 3).Formula =

security fund Then

has brokerage = Workbooks (MODELS NAME) .

found = True

End If
Next

If Not found Then
MsgBox security fund & " not found"

End If

End Function

Worksheets (YIELDS) .Cells (r,

4)

yes for

32

4.1Example 4 — Calculating tax (Australia)

‘' Calculate income tax for the 2015/16 financial year

' tax rates for 2015/16

' not applicable if the person is eligible for the seniors or pensioner's offset

(affects medicate levy)

Public Function calc tax 2015 16 (income As Double)

Dim tax As Double
If income > 180000 Then

tax = 54547 + ((income - 180000) * 0.47)
ElseIf income > 80000 Then

tax = 17547 + ((income - 80000) * 0.37)
ElseIf income > 37000 Then

tax = 3572 + ((income - 37000) * 0.325)
ElseIf income > 18200 Then

tax = ((income - 18200) * 0.19)
Else

tax = 0

End If

' medicare (single)
If income > 26120 Then
tax = tax + income * 0.02
ElseIf income > 20897 Then
tax = tax + (income - 20897) * 0.1
End If
calc tax 2015 16 = tax

End Function

5 Resources

A number of websites have useful information for the VBA macro programmer.

You may refer to material on the author’s personal website at www.markmcilroy.com

The site http://www.techonthenet.com/excel/formulas/ is very useful and has all
Excel functions listed by category.

Pressing F1 in the Excel macro window will bring up the Microsoft help system. For help on a
particular function or keyword, highlight the word before pressing F1.

34

http://www.markmcilroy.com/
http://www.techonthenet.com/excel/formulas/

6 About the author

Mark Laurence Mcllroy has extensive experience working in the Financial Services sector in IT
development roles, Portfolio Manager (Quantitative) and Financial Planning roles.

Mark has an undergraduate degree in Computer Science and Applied Mathematics.

Mark also as Masters degrees in Applied Finance and Financial Planning.

After a long career in Information Technology roles in the Financial Services sector in Australia,
Mark has now made a career change into Financial Planning.

Mark lives with his wife in Melbourne, Australia.
Readers are welcome to send in general questions.

Mark can be contracted by email on mark.mcilroyQoutlook.com

For further information please refer to the author’s personal website at www.markmcilroy.com

35

mailto:mark.mcilroy@outlook.com
http://www.markmcilroy.com/

